
LITERATURE CITED 

i. V.T. Borisov, B. Ya. Lyubov, and D. E. Temkin, Dokl. Akad. Nauk SSSR, 104, No. 2 (1955). 
2. B. Ya. Lyubov, Kinetic Theory of Phase Transformations [in Russian], Metallurgiya, Mos- 

cow (1970), p. 131. 
3. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1956). 
4. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford Uni- 

versity Press (1959). 
5. A.V. Lykov, The Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967). 
6. V.V. Gal' et al., Theoretical Foundations of Chemical Technology [in Russian], No. 6 

(1969). 
7. B. Delmont, The Kinetics of Heterogeneous Reactions [Russian translation], Mir, Moscow 

(1972). 
8. D.E. Temkin, Inzh.-Fiz. Zh., No. 4 (1962). 

METHODS AND PROSPECTS OF THE DIRECT EXPERIMENTAL VERIFICATION 

AND REFINEMENT OF THE "PACKET" MODEL OF EXTERNAL HEAT 

TRANSFER IN A FLUIDIZED BED 

O. M. Todes UDC 66.096.5 

Analysis of the Basis of the Model 

The packet model proposed by Mickley [I] has served as a basis for explaining a whole 
series of special characteristics of external heat transfer in fluidized beds and for the 
construction of engineering formulas facilitating the practical estimation and calculation 
of heat-transfer coefficients. After considering new experimental data as to the structure 
of the boundary zone [2, 3] and the sharp criticism of the packet model made by Syromyatnikov 
[4], a more detailed analysis of the fundamental principles of the model has now become a 
matter of great importance. 

A fluidized bed of solid particles agitated by a rising gas flow is usually very in- 
homogeneous, not only in the boundary zone, but also over the whole volume of the apparatus. 
The local porosity c fluctuates constantly from e = i to c = Smin~0.4. In order to describe 
a number of phenomena associated with heat and mass transfer and catalytic reactions, many 
research workers [5] prefer to consider these fluctuations schematically and (by way of sim- 
plification) to assume that at any specific instant the fluidized bed consists of regions 
existing in one of two limiting states: s = I, i.e., gas bubbles free from particles, and 

= emin, constituting the so-called dense or compact phase (packets). The basis for making 
such a far-reaching schematization when analyzing catalytic reactions in a fluidized bed is 
the vast quantitative (practically qualitative) difference in the properties of these limit- 
ing states. Inside the bubble the gas never encounters catalyst grains, and no reaction oc- 
curs. In the dense phase, however, the reaction rate reaches a maximum. To a first approxi- 
mation this so-called two-phase model of the fluidized bed gives a satisfactory explanation 
for the reduction in the yield of the reaction in a fluidized bed by comparison with a sta- 
tionary catalyst and also reveals the main factors capable of influencing the degree of yield. 
Later on, however, when attempting to refine the quantitative laws of the process [6], it was 
found necessary (to a certain extent) to allow for intermediate states as well, namely, par- 
ticles spilling down into the interior of the bubble, the "tail" of tile bubble, and the 
"cloud" of adjacent particles undergoing vigorous gas-exchange with the bubble itself. It 
may well be that a description of the processes based on a fuller account of all the contin- 
uously varying states existing between the bubble and the packet will lead to major advances [7]. 
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An analogous rough schematization of the structure of the boundary layer was proposed 
by Mickley [i] in analyzing external heat transfer: first a packet and then a bubble alter- 
nately approaches the wall (or a heat-transfer surface immersed in the fluidized bed), and 
the heat-transfer intensity fluctuates over a wide range. A similar concept was developed 
by Zabrodskii [8] in considering the coming and going of the neighboring layer of particles 
relative to the wall. 

The existence of such a very transient mechanism of external heat transfer was quali- 
tatively confirmed by Mickley [9] and others [i0, ii], who immersed a low-inertia heater 
with a low heat capacity (a foil) into the bed and noted the sharp temperature fluctuations 
of the latter. It was considered that after the arrival of a packet the foil rapidly lost 
temperature, and on replacing the packet by a gas bubble (owing to the sudden reduction in 
heat outflow) the temperature of the foil increased. 

The well-known approximate Mickley formula derived from these simplified considerations: 

4 (1) 

was later supplemented by Baskakov [12] who introduced the so-called "contact" resistance of 
the gas interlayer between the wall and the packet.* 

An analysis of this approximate relationship provided a good explanation for a number 
of qualitative characteristics of external heat transfer in fluidized beds [13]. Thus, in 
view of the fact that the effective thermal conductivity of the dense layer Xe = Xgf(eo) 
was directly proportional to the thermal conductivity of the gas Xg, it was easy to under- 
stand the approximate dependence of the heat-transfer coefficient on the nature of the gas 

~ The fact that the volumetric heat capacity of solids cTP T depends only very slight- 
ly upon their chemical nature (since approximately the same number of atoms always occurs in 
unit volume) enables us to explain why the heat-transfer coefficient ~ is almost independent 
of the grain material. Since the frequency of the pulsations and the interchange of bubbles 
and packets in the fluidized bed is in order of magnitude equal to ~i/2~/q/H, while the 
height of the bed in both laboratory columns and industrial systems usually only varies over 
the range H~0.1-1 m, it is easy to understand why ~ax is almost identical, despite the 
great variety of conditions. The dependence of ~ on the diameter d of the particles in the 
fluidized bed [which does not enter directly into Eq. (i)] is, in fact, very weak. Finally, 
quantitative estimates [13] of ~max based on Eq. (i) yield excellent agreement with experi- 
ment. On the basis of Eq. (i) we deduced a relationship between the maximum external heat- 
transfer coefficient and the physical characteristics of the gas and grains: 

~m~=3"27 X~'~v~ ''~(cT9~)~ (p.~ oo77 
do~3~ �9 w / ( m  2. ~ (2) 

which agreed satisfactorily with experiment and was similar to Zabrodskii's empirical formula 
[8]. 

Naturally, under practical conditions the limiting states (c = 1 and s = ~o) are ac- 
companied by all the intermediate states so < ~ < i. Let us consider how the thermal charac- 
teristics of the boundary layer (thermal conductivity X, volumetric heat capacity cp, ther- 
mal diffusivity a = X/cp, and thermal assimilation s = $~cp) are likely to vary in these in- 
termediate states. The latter two parameters characterize processes of transient heat prop- 
agation in the medium under consideration, while the quantity s = /~cp enters directly into 
Eq. (i), which gives the average heat-transfer coefficient in the presence of transient heat- 
ing of the medium close to the wall, and ~ ~ s. 

For e = 1 we have a pure gas with its own values of Xg (cp) g, ag, andsg, in the second 
limiting state g = so the thermal conductivity of the loose granular bed X e = Xgf(so)~10Xg 
and is practically independent of the particle material [14]. The volumetric heat capacity 
of the dense granular bed (cp) e = CTPT(l--ao)~lO~(cP)g. Hence ae~10-iag, andre ~100~g. 
An approximate curve indicating the way in which these parameters vary with increasing volu- 
metric concentration of the solid phase (1--so) is presented in Fig. i. We see from the fig- 

�9 Antonishin [17] also proposed allowing for transience in the initial stage of heat transfer 
between the gas and the particle. 
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Fig. i. Change in the thermal characteristics 
of a dispersed medium with increasing propor- 
tion of the solid phase. I) c0/(Cp)g; II) a/ 
ag; III) %/hg; IV) a / a g .  

ure that the thermal characteristics of the limiting states (bubbles and packets) differ by 
1-2 orders of magnitude; this is the main justificatiQn for considering the process of heat 
transfer to the continuously varying intermediate states of the boundary zone (at any rate, to 
a first approximation) schematically, taking account of simply the extreme states (as in the 
packet model). 

This schematic packet model should certainly be improved and refined at a later date by 
allowing for all the intermediate states also. However, in criticizing the model for im- 
precision [4], we must not forget the great service which it has performed in practical en- 
gineering [13] and treat it as simply untrue. 

The foregoing estimates provide a simple basis for introducing the concept of contact 
resistance [12]. The time ~ of the transient heating of a layer of thickness b is given by 
the approximate relationship 

b 2 
x ~ O . 1  - -  (3) 

a 

Thus, the heating time of a compact granular bed T e = 0.1(b2/ae) is i00 times longer than 
that of a gas layer of the same thickness T~ = 0.1(b2/ag) = 0.1(b2/100ae) = Te/100. In other 
words, whereas the heat penetrates into the packet fairly slowly and in a transient manner, 
the gas interlayer between the packet and the wall is heated almost instantaneously, and heat 
transfer through the layer proceeds on an almost steady-state basis, with a linear temper- 
ature drop and a constant thermal resistance R k = b/hg. 

Inverting Eq. (3), 

b = 17 lOax, (4) 

we obtain yet another interesting estimate. For a thermal diffusivity of the compact granu- 
lar bed ae~2"10 -7 m2/sec and a mean pulsation frequency of 5 Hz, i.e., T~0.2 sec, it fol- 
lows from Eq. (4) that the depth of heating of the packet during this time will be approxi- 
mately 6"10 -~ m = 0.6 mm. This estimate shows that for fine grains with diameter d ~0.1-0.3 
mm the Mickley packet model describes the process more closely [I], while for coarser parti- 
cles with d~0.5-1.0 mm the Zabrodskii model is preferable [8]. 

Heat Transfer from a Low-Inertia Heater to a Fluidized Bed 

Equation (i) was obtained for an average heat-transfer coefficient ~ defined as the ra- 
tio of the average thermal flux qo taken over many fluctuations to the constant temperature 
drop eo between the wall and the core of the fluidized bed. Such constancy of the heater 
surface temperature eo = const, however, is only possible for an infinitely great thermal 
inertia, such as is practically achieved under real industrial conditions. 

In order to detect the fluctuations in the heat flow perfectly clearly during the mutual 
exchange of bubbles and packets at the surface, Mickley [9] proposed using a low-inertia 
heater (a platinum foil), on which fluctuations in the outgoing thermal flux should appear 
as recordable fluctuations in the temperature of the actual heater 8(~). Mickley gave no 
detailed analysis of the way in which these fluctuations might be affected by the thermal 
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Fig. 2. Time dependence of the tem- 
perature distribution inside a packet: 
a) heater with a great inertia; b) 
heater with a very low inertia. 

characteristics of the heater itself and its thermal history prior to the arrival of the 
cold packet. It was tacitly assumed that the low-inertia heater was simply a convenient in- 
dicator, while the character of the changes taking place in the thermal flux which it con- 
veyed to the packet q(T) should remain the same as in the case of a wall with a very great 
thermal capacity. This presumption led to a number of inaccuracies and paradoxes, especially 
when it was desired [2] to measure and describe the temperature fluctuations of the heater 

itself and the structure of the boundary zone at its surface at the same time. 

In order to elucidate the influence of the thermal characteristics of the actual heater 
on heat exchange with the packet we shall now carry out a corresponding calculation. We 
shall regard the problem as one-dimensional. Close to the left-hand side of the plane x = 0 
is a heater of thickness ~ with a heat capacity per unit area (cp~) = CI and a high thermal 
conductivity. An external source (e.g., an electric current passing through the foil) evolves 
a certain quantity of heat qo = const per unit surface area of the heater in unit time. 
Owing to the great thermal conductivity, the temperature e at all points inside the heater may 
be regarded as identical and depends solely on time 0 = e(~). At the initial instant T = 0, 
when the heater is characterized by a certain temperature eo, a cold packet falls on it from 
the right, having a constant temperature T(x, T) over the whole half-plane 0 < x < ~; we shall 
arbitrarily set T(x, 0) = 0. The heat from the heater is propagated by simple heat conduc- 
tion in the packet, and the temperature of the latter at subsequent moments of time satis- 
fies the equation 

OT O2T 
= a e  - -  ( 5 )  

O~ Ox ~ 

At the boundary with the heater the medium assumes the heater's temperature, 

T(O, "r)= 0 (~c). (6) 

The thermal flux entering into the packet q(~) =--%e(3T/3x)x=0 is related to the thermal 
balance of the actual heater by the equation 

dO 

Ox J~=o 
(7) 

Before solving the complete system of equations (5)-(7) with specified initial condi- 
tions, let us consider the limiting cases of a heater with an infinitely great thermal iner- 
tia (CI +~), corresponding to ordinary industrial conditions, and also a completely iner- 
tialess heater (CI+0). 

In the first case Cx = =, it follows from (7) that de/dT = 0 and e = const = ~o. Equa- 
tion (5) with the boundary condition T(0, T) = eo has a well-known [15] solution for a half- 
space; using this solution we may calculate the thermal flux from the wall: 
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q' (z) = 0 o 1 /  ~'e(Cp)e=x (8) 

at an arbitrary moment of time �9 after the start of the process and the instantaneous heat- 
transfer coefficient: 

# ~,e(Cp) e (Z I ('0 = = 1 /  
Oo v ~'~ 

(8*) 

In the second limiting case CI = 0, it follows from (7) that q(T) = const = qo. The tem- 
perature of the inertia-free heater falls instantaneously from eo to zero when the packet 
arrives and then starts rising together with the temperature of the adjacent zone of the 
packet, in accordance with the equation [15] 

0"= 2q~ (9) 

Correspondingly, the formal instantaneous heat-transfer coefficient 

I/ o,,q .o ;%(CO)e = 4 x (9*) 

varies in accordance with the same law as the heater with infinite inertia, but exceeds it 
by a factor of ~2/~-~= 1.57 times. Figure 2a and b shows that the temperature distribution 
and heating of the packet vary with time in completely different ways in these two limiting 
cases. 

In the most general case, in which CI is neither equal to zero nor infinity, the solu- 
tion of the system (5)-(7) may easily be obtained by an operational method for both T(x, T) 
and @(T). Transforming from the images to the original in the latter expression, we obtain 

O(T)-- q~ {l/// 4 ~e(~P!eX +exp[~e(~!e~] 
~ ( c ~ )  a x 

X e r f c [ r  ]j-- 1} ' " [Ne(Cp)eX]erfc[]//-Ne(cP)eTCT ~ Uoexp L ~ o 1. (i0) 

We may also correspondingly calculate the thermal flux, 

dO 
q (x) = q o -  Cz d~'" 

In order to analyze the resultant solution (i0), we should really take a more convenient 
time scale, not containing the parameter CI (variable in the foregoing analysis). A suitable 
scale of this kind is 

'~* = ; % ( c p ) e  = - 2 
(ZO 

(ii) 

where ao = qo/Oo coincides in order of magnitude with the average heat-transfer coefficient 
from the wall to the fluidized bed. Let us then introduce the dimensionless time 

x a]x 
'q ----- -~------ )~e(Cp)e (12) 

and the dimensionless parameter 

M = Cl~176 (13) 
,~e(Cp) e ' 

478 



o rl 0f 

Fig. 3. 

i 
i 

i 

Relative heater temperature as 
a function of its time of contact with 
the packet for various values of the ther- 
mal-inertia parameter M. 

characterizing the relative inertia of the heater. Our solution (i0) in the dimensionless 
variables n and e(z) = e(T)/eo then takes the form 

M~ + e~/M'erfc M~ 1 + e~/M'erfc (14) 
M 2 .  

The foregoing extreme cases may be derived from this general expression by putting M§ 0 and 
M+=. Figure 3 presents a set of curves described by Eq. (14) both for the limiting values 
of the parameter M and for several intermediate M values of the order of unity. The latter 
are extremely typical: when a cold packet approaches, a real low-inertia sensor does in fact 
start cooling rapidly. However, as indicated by Baskakov [18], after a certain time Tmin = 
~m T* the closest layers of the packet are heated so much that the heater starts emitting less 
heat and its temperature begins rising together with the packet. 

Thus, the character of the recorded heater-temperature/time curve O(T) depends very con- 
siderably on the relationship between the calculated value of Tmi n and the time to during 
which the packet remains close to the heater, after which it is replaced by the bubble. If 
ro = Tol < Tmin, then while the packet is in contact with the heater the temperature of the 
latter will in fact fall, as indicated by all research workers who have measured it. The 
situation will be quite different for very low-inertia heaters, for which Tmi n is small and 
To = roll > Tmi n. In this case the heater temperature will initially fall; however, in the in- 
terval Tmi n < T < roll the packet will still be in contact with the heater, but the temper- 
ature of the latter will start rising, and this may be erroneously interpreted as meaning 
the departure of the packet and its replacement by the bubble. The possibility of such a 
relationship to > Tmin has already been observed [16]. On replacing the packet by a cold 
bubble the characteristic time scale T* will, however, shorten by four orders of magnitude, 
and the heater temperature will start rising almost at once. 

Since the foregoing analysis and the curves of Fig. 3 show that nm depends on the param- 
eter M = [C~/~e(CP)e].(qo/eo) which contains not only the specific heat of the heater C~, but 
also the initial temperature Co, the relationship between To and rmi n may still depend very 
considerably on the latter, i.e., on the preceding thermal history of the heater. 

A more detailed analysis of Eq. (14) shows that for large values of the parameter M > i0, 
i.e., for a high thermal inertia of the heater C: and a low degree of heating of the latter 
0o at the instant of arrival of the packet, the quantity ~m tends to a constant value if~ = 
0.318 and ~min = (I/~)T* = 0.318[~e(CP)e]/~. However, on reducing the thermal inertia C~ 
or increasing Co, the quantity h m and the time required to reach the minimum temperature rmin~ 
i.e., the transition from cooling to heating, is sharply reduced, and for M < 0.i we shall 
have ~m M/2, i.e., Tmin~(M/2)T* = (C1/2)(eo/qo). Since the heater temperature eo at the 
instafft of arrival of the packet may vary considerably according to the period of contact be- 
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tween the heater and the bubble, the recorded temperature curves 8(T) corresponding to two 
successive packets may be completely different, even when their period of contact with the 
wall to is exactly the same. 

Let us make some quantitative estimates. 

For a granular bed of sand with a bulk density 0b = 1500 kg/m 3 we have 

j2 
ke(CP)e~ 36. I@ mz. sec. "k ( 1 5 )  

Putting 

ce o , ~  400 mZ ~sec- oK ~ (16) 

we find that 

' 2 - ~ 2 . 2 5  sec and~mt n = ~m~*.~V0.72 . ( 1 7 )  

Thus, for a very inertial heater under practical industrial conditions To << ~min the calcula- 
tion of the average value of ~ by Eq. (i) is quite permissible. 

For Mickley's platinum foil of thickness ~ = 25 H = 25.10 -~ m the thermal inertia 

J 
C 1 = 72 ~ ( 1 8 )  

m 2 . o K 

and the parameter 

M 1 = C1r176 ~ , 0 . 0 8 < <  1. ( i 9 )  
(cp) e 

In this case the time to reach minimum temperature is 

C1 
"t'mln ~ ~--~ 0.09 c, ( 2 0 )  

2~z o 

i.e., it would really be possible to find cases in which To > Tmin, and the foil starts heat- 
ing before the packet has been replaced by the bubble. 

It is considerably more difficult to estimate the parameters in the cases of Baskakov 
[16] and Syromyatnikov [2, 3]. Although the thickness of the foil in these cases was much 
smaller than 8~J~5 ~ = 5.10 -6 m, in contrast to the experiments of Mickley the foil was bonded 
to a continuous solid substrate, the thermal conductivity of the latter being an order of 
magnitude greater than the effective thermal conductivity of the packet. However, the ther- 
mal flux passing into this substrate was never measured, and an exact calibration of the con- 
sequently changing thermal inertia of the heater CI is therefore impossible, since the flow 
of heat into the substrate depends on the whole thermal prehistory of the latter. 

Experimental Ways of Verifying and Refining the Packet Model 

The foregoing calculations may be refined by allowing for the contact resistance R k of 
the gas interlayer between the packet and the heat-transfer surface. However, a refinement 
of this kind will not make any qualitative difference to the foregoing conclusions. Since 
the mere measurement and recording of the temperature of a low-inertia heater will not enable 
us to assess the presence or absence of a packet in the immediate neighborhood of the heat- 
transfer surface uniquely and accurately, the method proposed by Mickley [9] is inconclusive 
and other experimental possibilities must accordingly be discussed and tested. One of these 
ways (the most promising in our own opinion) involves dispensing with the low-inertia heater 
and passing to aheater in which the surface temperature will remain practically constant: 
8o = const. To this end the fluctuating thermal flux q(T) must be measured with a low-lnertia 
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thermal sensor attached to the heater surface. In order to ensure that the temperature drop 
e~ in this type of thermal sensor, with thickness b and thermal conductivity %, should not 
exceed 2% of the total drop eo between the wall and the core of the fluidized bed, it is es- 
sential that the thermal resistance of the thermal sensor R T = b/~ should be 0.02/so, i.e., 

~ 2 0 0 0 0  J .... ( 2 1 )  
b m 2 " s e c ' ~  

If the thickness of the thermal sensor is b = 0.i mm = 10 -4 m, this requires that its ther- 
mal conductivity should be % = 2 J/m.sec.~ which is characteristic of dense materials. For 
the heating time (3) to be no more than 0.01 sec, the thermal diffusivity of the material 
should be 

a = 10b  ~ = 10 -7 m2/sec ,  

whence the volumetric heat capacity of the material 

( 2 2 )  

J 
c p - -  -- 2 .1  7 (23) a 0 mS. ~ 

As the specific heat of solids c~103 J/(kg.~ adensity of the material equal to p~20,000 
kg/m 3 is quite reasonable. 

Since experimental prospects of recording rapid changes in the structure of the boundary 
layer have recently advanced very substantially, the development and construction of low- 
inertia thermal sensors would enable the instantaneous fluctuations in the thermal flux q(T) 
to be recorded at the same time as these changes. The setting up of such experiments will 
certainly be very helpful in creating a more perfect model of the mechanism underlying the 
external heat transfer of a fluidized bed. This model should make a more accurate allowance 
for the stochastic character of the continuously varying circumstances in the boundary zone 
and the role of the intermediate states between those of the "packet" and "bubble" types. 

NOTATION 

e, so=emin, local porosity and porosity in the packet; l, %T, %g,%e, thermal conduc- 
tivities of the medium, the grains, the gas, and the packet; c, CT, Cg, CI, specific heat 
(general), heat capacities of the grains and the gas, and unit area of the heater; p, OT, 
Pg, Pe, densities of the medium, the grains, the gas, and the packet; a, aT, ag, a e, ther- 
mal diffusivities of the medium, the grains, the gas, and the packet; a, ~, ~max, so, ~', a", 
heat-transfer coefficients -- general, average, maximum, effective, and instantaneous (last 
two); s, ST, Sg, heat assimilations of the medium, the grains, and the gas; fo, relative 
period of contact between the surface and the bubbles; ~ , frequency of packet replacement; 
g, gravitational acceleration; H, height of the fluidized bed; b, 6, thickness of the bed or 
of the gas layer or heater; d, grain diameter; v, kinematic viscosity of the gas; T, T*, 
rmin, To, r], time -- current, characteristic, time required to reach the minimum temperature, 
contact time between packet and heater, and dimensionless time; e, co, @, temperature of 
heater, initial temperature, and dimensionless temperature; T, temperature of the medium 
(packet); q, qo, thermal flux and heat released per unit surface of the heater; M, parame- 
ter representing the relative inertia of the heater. 
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